3.2581 \(\int \frac{(2+3 x)^3 \sqrt{3+5 x}}{(1-2 x)^{5/2}} \, dx\)

Optimal. Leaf size=113 \[ \frac{\sqrt{5 x+3} (3 x+2)^3}{3 (1-2 x)^{3/2}}-\frac{233 \sqrt{5 x+3} (3 x+2)^2}{66 \sqrt{1-2 x}}-\frac{\sqrt{1-2 x} \sqrt{5 x+3} (69780 x+168157)}{3520}+\frac{126513 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )}{320 \sqrt{10}} \]

[Out]

(-233*(2 + 3*x)^2*Sqrt[3 + 5*x])/(66*Sqrt[1 - 2*x]) + ((2 + 3*x)^3*Sqrt[3 + 5*x])/(3*(1 - 2*x)^(3/2)) - (Sqrt[
1 - 2*x]*Sqrt[3 + 5*x]*(168157 + 69780*x))/3520 + (126513*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(320*Sqrt[10])

________________________________________________________________________________________

Rubi [A]  time = 0.0299392, antiderivative size = 113, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {97, 150, 147, 54, 216} \[ \frac{\sqrt{5 x+3} (3 x+2)^3}{3 (1-2 x)^{3/2}}-\frac{233 \sqrt{5 x+3} (3 x+2)^2}{66 \sqrt{1-2 x}}-\frac{\sqrt{1-2 x} \sqrt{5 x+3} (69780 x+168157)}{3520}+\frac{126513 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )}{320 \sqrt{10}} \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x)^3*Sqrt[3 + 5*x])/(1 - 2*x)^(5/2),x]

[Out]

(-233*(2 + 3*x)^2*Sqrt[3 + 5*x])/(66*Sqrt[1 - 2*x]) + ((2 + 3*x)^3*Sqrt[3 + 5*x])/(3*(1 - 2*x)^(3/2)) - (Sqrt[
1 - 2*x]*Sqrt[3 + 5*x]*(168157 + 69780*x))/3520 + (126513*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(320*Sqrt[10])

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 150

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 147

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> -Simp[((a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x)*(a + b*x)^
(m + 1)*(c + d*x)^(n + 1))/(b^2*d^2*(m + n + 2)*(m + n + 3)), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(
n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*
(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)^n
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{(2+3 x)^3 \sqrt{3+5 x}}{(1-2 x)^{5/2}} \, dx &=\frac{(2+3 x)^3 \sqrt{3+5 x}}{3 (1-2 x)^{3/2}}-\frac{1}{3} \int \frac{(2+3 x)^2 \left (32+\frac{105 x}{2}\right )}{(1-2 x)^{3/2} \sqrt{3+5 x}} \, dx\\ &=-\frac{233 (2+3 x)^2 \sqrt{3+5 x}}{66 \sqrt{1-2 x}}+\frac{(2+3 x)^3 \sqrt{3+5 x}}{3 (1-2 x)^{3/2}}-\frac{1}{33} \int \frac{\left (-\frac{5349}{2}-\frac{17445 x}{4}\right ) (2+3 x)}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{233 (2+3 x)^2 \sqrt{3+5 x}}{66 \sqrt{1-2 x}}+\frac{(2+3 x)^3 \sqrt{3+5 x}}{3 (1-2 x)^{3/2}}-\frac{\sqrt{1-2 x} \sqrt{3+5 x} (168157+69780 x)}{3520}+\frac{126513}{640} \int \frac{1}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{233 (2+3 x)^2 \sqrt{3+5 x}}{66 \sqrt{1-2 x}}+\frac{(2+3 x)^3 \sqrt{3+5 x}}{3 (1-2 x)^{3/2}}-\frac{\sqrt{1-2 x} \sqrt{3+5 x} (168157+69780 x)}{3520}+\frac{126513 \operatorname{Subst}\left (\int \frac{1}{\sqrt{11-2 x^2}} \, dx,x,\sqrt{3+5 x}\right )}{320 \sqrt{5}}\\ &=-\frac{233 (2+3 x)^2 \sqrt{3+5 x}}{66 \sqrt{1-2 x}}+\frac{(2+3 x)^3 \sqrt{3+5 x}}{3 (1-2 x)^{3/2}}-\frac{\sqrt{1-2 x} \sqrt{3+5 x} (168157+69780 x)}{3520}+\frac{126513 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{3+5 x}\right )}{320 \sqrt{10}}\\ \end{align*}

Mathematica [A]  time = 0.0600223, size = 74, normalized size = 0.65 \[ \frac{4174929 \sqrt{10-20 x} (2 x-1) \sin ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )-10 \sqrt{5 x+3} \left (71280 x^3+431244 x^2-1786144 x+625431\right )}{105600 (1-2 x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x)^3*Sqrt[3 + 5*x])/(1 - 2*x)^(5/2),x]

[Out]

(-10*Sqrt[3 + 5*x]*(625431 - 1786144*x + 431244*x^2 + 71280*x^3) + 4174929*Sqrt[10 - 20*x]*(-1 + 2*x)*ArcSin[S
qrt[5/11]*Sqrt[1 - 2*x]])/(105600*(1 - 2*x)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 137, normalized size = 1.2 \begin{align*}{\frac{1}{211200\, \left ( 2\,x-1 \right ) ^{2}} \left ( 16699716\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ){x}^{2}-1425600\,{x}^{3}\sqrt{-10\,{x}^{2}-x+3}-16699716\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) x-8624880\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+4174929\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) +35722880\,x\sqrt{-10\,{x}^{2}-x+3}-12508620\,\sqrt{-10\,{x}^{2}-x+3} \right ) \sqrt{1-2\,x}\sqrt{3+5\,x}{\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^3*(3+5*x)^(1/2)/(1-2*x)^(5/2),x)

[Out]

1/211200*(16699716*10^(1/2)*arcsin(20/11*x+1/11)*x^2-1425600*x^3*(-10*x^2-x+3)^(1/2)-16699716*10^(1/2)*arcsin(
20/11*x+1/11)*x-8624880*x^2*(-10*x^2-x+3)^(1/2)+4174929*10^(1/2)*arcsin(20/11*x+1/11)+35722880*x*(-10*x^2-x+3)
^(1/2)-12508620*(-10*x^2-x+3)^(1/2))*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2*x-1)^2/(-10*x^2-x+3)^(1/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^3*(3+5*x)^(1/2)/(1-2*x)^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 1.53004, size = 304, normalized size = 2.69 \begin{align*} -\frac{4174929 \, \sqrt{10}{\left (4 \, x^{2} - 4 \, x + 1\right )} \arctan \left (\frac{\sqrt{10}{\left (20 \, x + 1\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{20 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) + 20 \,{\left (71280 \, x^{3} + 431244 \, x^{2} - 1786144 \, x + 625431\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{211200 \,{\left (4 \, x^{2} - 4 \, x + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^3*(3+5*x)^(1/2)/(1-2*x)^(5/2),x, algorithm="fricas")

[Out]

-1/211200*(4174929*sqrt(10)*(4*x^2 - 4*x + 1)*arctan(1/20*sqrt(10)*(20*x + 1)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10
*x^2 + x - 3)) + 20*(71280*x^3 + 431244*x^2 - 1786144*x + 625431)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(4*x^2 - 4*x +
 1)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**3*(3+5*x)**(1/2)/(1-2*x)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.33807, size = 113, normalized size = 1. \begin{align*} \frac{126513}{3200} \, \sqrt{10} \arcsin \left (\frac{1}{11} \, \sqrt{22} \sqrt{5 \, x + 3}\right ) - \frac{{\left (4 \,{\left (891 \,{\left (4 \, \sqrt{5}{\left (5 \, x + 3\right )} + 85 \, \sqrt{5}\right )}{\left (5 \, x + 3\right )} - 2783318 \, \sqrt{5}\right )}{\left (5 \, x + 3\right )} + 45924219 \, \sqrt{5}\right )} \sqrt{5 \, x + 3} \sqrt{-10 \, x + 5}}{1320000 \,{\left (2 \, x - 1\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^3*(3+5*x)^(1/2)/(1-2*x)^(5/2),x, algorithm="giac")

[Out]

126513/3200*sqrt(10)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3)) - 1/1320000*(4*(891*(4*sqrt(5)*(5*x + 3) + 85*sqrt(5)
)*(5*x + 3) - 2783318*sqrt(5))*(5*x + 3) + 45924219*sqrt(5))*sqrt(5*x + 3)*sqrt(-10*x + 5)/(2*x - 1)^2